ОТЗЫВ

Официального оппонента на диссертационную работу Дагиль Юлии
Алексеевны «Клеточная модель для исследования биологической активности и
фармакокинетики агонистов NOD-рецепторов» на соискание ученой степени
кандидата биологических наук по специальности «03.03.03 – иммунология».

Актуальность темы

Диссертационная работа Ю.А.Дагиль «Клеточная модель для исследования
биологической активности и фармакокинетики агонистов NOD-рецепторов» посвящена
вопросам, имеющим важное научно-практическое значение, а именно применению
CRISPR-Cas9-опосредованного нокаута генов при получении клеточных линий,
использующихся для оценки биологической активности и фармакокинетики природных и
синтетических агонистов паттерн-распознающих рецепторов, поиску и характеристике
новых селективных и двойных агонистов NOD1- и NOD2-рецепторов врожденного
иммунитета.

На сегодняшний день, поиск и разработка новых иммуностимуляторов и адъювантов
является актуальной задачей медицинской иммунологии. В качестве перспективных
соединений, оказывающих иммуностимулирующий эффект, рассматриваются агонисты
паттерн-распознающих рецепторов. Широко известна адъювантная активность агонистов
NOD-рецепторов врожденного иммунитета – мурамилпептидов. Показано, что
мурамилпептид и его дериваты могут быть использованы как перспективные
молекулярные адъюванты, введение которых в состав вакцинных формулаций
увеличивает напряженность адаптивного иммунитета и способствует его поляризации по
Th1-типу.

Однако, существующие методы оценки активности и специфичности
мурамилпептидов трудоемки и дорогостоящие. Таким образом, для поиска, оценки
фармакокинетики и производстве препаратов, на основе агонистов NOD-подобных
рецепторов необходимо разработать простой, надежный и валидируемый метод оценки
биологической активности мурамилпептидов.

Созданная автором клеточная модель пригодна для изучения специфичности и
фармакокинетики агонистов NOD1 и NOD2 рецепторов. Актуальными являются
результаты автора по биологической активности мурамилпептидов, для которых в литературе до сих пор не было данных об их способности активировать NOD-рецепторы, а также данные по фармакокинетике.

Основные результаты диссертационной работы

В ходе проведенных исследований на основе клеток 293Luc с помощью технологии CRISPR/Cas9 были получены три клеточных клона с нокаутами генов NOD1, NOD2 и с двойным нокаутом. Эти клоны позволили оценить специфичность мурамилпептидов в отношении рецепторов NOD1 и NOD2.

Результаты работы несколько видоизменили существующие представления о рецепторной специфичности мурамилпептидов и их производных. Во-первых, активаторами NOD2 оказались не только известные из литературы агонисты, такие, как например, МДП и ГМДП, но и мурамилпептиды грамотрицательных бактерий, содержащие остаток мезо-ДАП. Во-вторых, подтверждено, что активаторами рецептора NOD1 являются только мурамилпептиды с остатком мезо-ДАП. Однако, активностью в отношении NOD1 обладают не только мурамилпептиды, у которых остаток мезо-ДАП экспонирован на конце молекулы, хотя они более активны, но и мурамилпептиды, содержащие остаток мезо-ДАП внутри пептидной цепи

С помощью полученной клеточной модели Дагиль Ю.А. были определены особенности структуры мурамилпептидов, определяющие биологическую активность и специфичность в отношении рецепторов NOD1 и NOD2. В соответствии с найденными закономерностями было выделено 3 группы агонистов: селективные агонисты NOD1, селективные агонисты NOD2 и двойные агонисты, что имеет значение для разработки иммуностимуляторов и адъювантов мурамилпептидной природы, так как распределение рецепторов NOD1 и NOD2 в клетках и тканях существенно различается.

Данные автора показывают, что у селективных агонистов NOD1 имеется остаток мезодиаминопипелиновой кислоты (мезо-ДАП), тогда как остаток N-ацетилмурамовой кислоты либо отсутствует, либо пиранозное кольцо в нем разрушено путем восстановления. У селективных агонистов NOD2, напротив, остаток мезо-ДАП отсутствует, а остаток N-ацетилмурамовой кислоты имеет нативную конформацию. Двойные агонисты содержат остаток мезо-ДАП наряду с нативной конформацией остатка N-ацетилмурамовой кислоты.
Следует отметить, что в работе диссертантом были использованы не только новая модель, но и традиционные методы: гиперэкспрессия рецепторов в репоферных клетках и нокдаун рецепторов в первичных макрофагах. Все они дали схожие результаты.

Показано, что созданная клеточная модель применима для оценки фармакокинетики агонистов NOD-рецепторов.

Достоверность полученных результатов

Достоверность полученных в работе результатов не вызывает сомнений. Автором было проведено достаточное количество исследований. Все экспериментальные результаты получены на сертифицированном и калиброванном оборудовании. Диссертационная работа выполнена на высоком научном и методическом уровне, с использованием современных методов исследования, отвечающих требованиям мировых стандартов. Результаты работы проанализированы и обработаны адекватными методами математической статистики.

Выводы диссертации обоснованы, вытекают непосредственно из экспериментальных данных, полученных диссертантом, и в полной мере отражают результаты исследований.

Научная новизна исследования и полученных результатов

Впервые получена клеточная модель для оценки биологической активности агонистов рецепторов NOD1 и NOD2, основанная на CRISPR/Cas9-опосредованном нокауте генов NOD1 и (или) NOD2. По сравнению с существующими, новая модель отличается физиологическими уровнями экспрессии NOD1 и NOD2, отсутствием неспецифической активации рецепторов и высокой специфичностью при оценке NOD1- и NOD2-агонистических свойств, требует меньших затрат времени и реактивов.

Впервые показано, что рецептор NOD1 распознает мурамилпептиды, содержащие остаток мезо-диаминоиминелиновой кислоты не только в концевом положении, но и внутри пептидной цепи. Впервые показано, что NOD2 распознает нативные мурамилпептиды, содержащие остаток мезо-диаминоиминелиновой кислоты. Впервые продемонстрировано существование трех групп агонистов NOD-рецепторов; определены структурные особенности каждой группы агонистов.

На базе вновь созданной модели впервые предложен метод исследования фармакокинетики агонистов NOD1 и NOD2, основанный на определении биологически активных агонистов в плазме.
Теоретическая и практическая значимость диссертационной работы

Результаты диссертационной работы, посвящённой созданию новой модели для оценки биологической активности и рецепторной специфичности агонистов NOD-рецепторов, представляют интерес и ценность для фундаментальной науки, занимающейся изучением и поиском агонистов рецепторов врожденного иммунитета, созданием новых иммуностимуляторов и адъювантов.

Созданная клеточная модель может применяться для изучения биологической активности агонистов NOD1- и NOD2-рецепторов, для контроля качества опытных и производственных партий мурамилпептидных препаратов, для изучения фармакокинетики агонистов NOD1- и NOD2-рецепторов в биологических образцах в сыворотке крови лабораторных животных.

Полученные в диссертации данные о сравнительной активности селективных и неселективных агонистов NOD-рецепторов в отношении моноцитов и макрофагов человека могут быть использованы при выборе агонистов, обладающих наиболее высокой иммуностимулирующей способностью.

Результаты диссертационной работы можно использовать при изучении активации NOD-рецепторов, а также при оценке вклада этих рецепторов в развитие иммунного ответа против патогена.

Общая характеристика диссертационной работы

Диссертационная работа написана по традиционному плану и состоит из введения, обзора литературы, описания материалов и методов исследования, результатов, их обсуждения, выводов, списка цитированной литературы. Диссертационная работа написана хорошим литературным языком. Во введении автор обосновывает актуальность изучаемой проблемы, рассматривает роль агонистов NOD-рецепторов при разработке иммуностимулирующих препаратов. На основании чётко сформулированной актуальности, новизны и практической значимости во введении изложены цели и задачи работы. В обзоре литературы достаточно полно освещено строение и физиология NOD-рецепторов, а также особенности их природных агонистов — мурамилпептидов, рассмотрены существующие методы определения биологической активности и концентрации агонистов NOD1 и NOD2 рецепторов. Однако, автор не упоминает об уже
существующих коммерческих репортерных клеточных линиях (например, фирмы Invovogen), со стабильной экспрессией NOD1 и NOD2, которые используются для оценки биологической активности агонистов данных рецепторов.

В главе материалы и методы дана характеристика методик, использованных в диссертации. Диссертантом последовательно описана процедура создания новой клеточной линии, в том числе скрининг клонов с предполагаемыми нокаутами NOD1 и NOD2, а также используемые мурамилпептиды и их производные, реактивы, расходные материалы и оборудование.

В главе «Результаты собственных исследований» описана процедура создания новой клеточной модели, которая включала в себя получение и характеристику репортерных клеток 239Luc, нокаутирование генов рецепторов NOD1 и (или) NOD2 с помощью CRISPR/Cas9, а также применение полученной модели для изучения биологической активности мурамилпептидов и их производных. Автором были выявлены закономерности распознавания агонистов NOD-рецепторами, показана связь между ключевыми химическими особенностями агонистов NOD-рецепторов и их специфичностью в отношении NOD1 и NOD2, что имеет значение для разработки иммуностимуляторов и адъювантов мурамилпептидной природы. Охарактеризованы структурные особенности трех групп агонистов NOD-рецепторов: селективных агонистов NOD1, селективных агонистов NOD2 и двойных (неспецифических) агонистов. В главе приведены результаты применения новой модели для изучения фармакокинетики мурамилпептидов при введении лабораторным кроликам. Автор убедительно доказывает эффективность разработанной им клеточной модели, однако для большей убедительности следовало бы провести сравнительный анализ фармакокинетики мурамилпептидов независимым способом (например, ВЭЖХ-MC).

В главе «Обсуждение» автор проводит интерпретацию полученных в ходе исследования результатов и сопоставляет их с данными литературы. Автор подробно анализирует методологические аспекты нокаутирования генов NOD1 и NOD2, полученные закономерности распознавания агонистов NOD-рецепторов, а также оценивает применение новой клеточной модели для изучения фармакокинетики агонистов NOD-рецепторов. Однако, при сравнительной характеристике результатов предлагаемого автором метода и уже существующих методов (таблица 10) в графе «нижний предел количественного определения» представлены данные по различным агонистам NOD-подобных рецепторов (с отличающейся биологической активностью).
Кроме того, хотелось бы, видеть сравнительную характеристику предлагаемой автором клеточной линии с уже имеющимися коммерческими клеточными линиями.

Сделанные выводы вытекают из результатов работы, четко сформулированы, полностью обоснованы и достоверны. Оформление диссертации соответствует требованиям, установленным Министерством образования и науки Российской Федерации. Работа изложена на 110 страницах машинописного текста, включает 10 таблиц и 39 рисунков.

Основное содержание диссертации опубликовано в 9 статьях, из них 6 статей в рецензируемых научных изданиях, рекомендованных Минобрнауки для публикации материалов докторских и кандидатских диссертаций. Материалы диссертации доложены и обсуждены на международных научных конференциях.

Автореферат полностью отражает содержание диссертационной работы.

Заключение

Диссертационная работа Дагиль Юлии Алексеевны «Клеточная модель для исследования биологической активности и фармакокинетики агонистов NOD-рецепторов» на соискание ученой степени кандидата биологических наук по специальности «03.03.03 – иммунология» является научной квалификационной работой, в которой на основе выполненных автором исследований осуществлено решение актуальных задач, имеющих существенное значение для иммунологии. Автором разработана новая клеточная модель для оценки биологической активности агонистов NOD1- и NOD2-рецепторов врожденного иммунитета. С помощью разработанной модели и традиционных методов уточнены представления о рецепторной специфичности мурамипептидов – природных агонистов рецепторов NOD1 и NOD2, а также восстановленных и лактоильных производных мурамипептидов. Методологические подходы, примененные при нокаутировании генов NOD1 и NOD2, могут применяться для нокаутирования этих генов и других низкоэкспрессируемых генов в клетках человека.

Диссертационная работа полностью соответствует требованиям, предъявляемым диссертациям на соискание ученой степени кандидата наук (п.9 «Положения о присуждении ученых степеней», утвержденного Постановлением Правительства Российской Федерации от 24.09.2013 г. №842 с изменениями №335 от 21.04.2016 г., №748
от 02.08.2016 г.), её автор Дагиль Юлия Алексеевна заслуживает присуждения искомой ученой степени кандидата биологических наук по специальности «03.03.03 – имmunология».

Официальный оппонент:
Заведующий лабораторией клеточной микробиологии ФГБУ «НИЦЭМ им. Н.Ф.Гамалеи» Минздрава России,
Член-корреспондент РАН,
доктор биологических наук

Подпись член-корр. РАН, д.м.н. Л.Ю. Логунова
ЗАВЕРЯЮ: Ученый секретарь ФГБУ «НИЦЭМ им. Н.Ф.Гамалеи» Минздрава России
кандидат биологических наук

Л.К. Кожевникова
07.10.2019 г.